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Abstract

   In the laboratory, rocks display highly elastically nonlinear behavior.  Characteristic parameters of

nonlinear elasticity can be measured in a resonant bar experiment.  Two important features of

nonlinear resonant behavior are a shift in resonant frequency away from the linear resonant

frequency as the amplitude of the disturbance is increased, and the harmonics in the time signal that

accompany this shift.  We have conducted Young's mode resonance experiments using bars of a

variety of rock types (limestone, sandstone, marble, chalk) and of varying diameters and lengths.

Typically, resonant frequency shifts of 10% or more are observed at strains of 10-7 - 10-6 for

samples at a variety of saturation conditions and ambient pressure conditions.  Correspondingly

rich spectra measured from the time signal progressively develop with increasing drive level.  To

date, the resonant peak is observed to always shift downward (if indeed the peak shifts), indicating

a net softening of the modulus with drive level.  This observation is in agreement with our pulse-

mode and static test observations, and those of other researchers.   Resonant peak shift is not

always observed even at large drive levels.  This is an unexpected result;  however, harmonics are

always observed even in the absence of peak shift when detected strain levels exceed 10-7 or so.

Important implications for measurement of modulus and Q (inverse attenuation) also result from

our study.  Resonant peak shift may begin at even the lowest drive levels in rock when it occurs,

and peak shift and peak width is dependent on frequency sweep direction.  Therefore, measurement

of moduli and Q must be undertaken with great caution.  Ultimately, we hope to apply this

technique to characterizing the nonlinear response of rock, to study of progressive change in
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material property, to applications in nondestructive evaluation, and to understanding of the nonlinear

response of the earth's crust.

Introduction

Observation of nonlinear elastic response in rock is not a new or novel revelation.  For

example, one well known manifestation of this behavior is demonstrated by countless quasi-static

measurements on rock of velocity (or modulus) versus applied stress (e.g., Birch, 1966).  These

tests show a strong nonlinear dependence between stress and strain (or modulus and stress), in

addition to the phenomena of hysteresis and discrete memory [also termed end point memory]

(e.g., Holcomb, 1982).  These phenomena are due primarily to compliant features in the rock

(cracks, grain boundaries, joints, etc.) and fluid effects.  More recent dynamic studies of transient

waves in rock at atmospheric pressure demonstrate that rock has a large nonlinear response at

relatively small strains [e.g., Van Den Abeele, 1994;  Guyer et al., 1994;  Liu, 1994;  Johnson and

McCall, 1994;  Meegan et al., 1993;  Belyaeva et al., 1993;  Ostrovsky, 1991;  Bakulin and

Protosenya, 1991;  Bonner and Wanamaker, 1991;  Johnson and Shankland, 1989;   Zinov'yeva

et al., 1989;   Beresnev and Nikolaev, 1988;  Johnson et al., 1987;  Bulau et al., 1984].  The

existence of a significant nonlinear elastic response at even moderate strains is not commonly

appreciated.

Our intention here is to describe, and in some cases, interpret many manifestations of

nonlinear elastic phenomena induced by resonating a bar of rock in Young's mode.  We will

emphasize resonant peak bending and harmonic generation, but other unexpected, "strange",

behavior resulting from resonant excitation as is observed in some rocks such as chalk will also

be described.   A surprising result of our work is that nonlinear behavior is not necessarily linked

with resonant peak bending.  That is, resonant peak bending always indicates that the material is

responding nonlinearly;  however, nonlinear response may exist without measurable resonant

peak shift.   On the other hand it will also be shown that resonant peak shift may begin at even the
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lowest drive levels in rock and that peak shift and peak width is dependent on sweep direction.

Therefore, measurement of moduli and Q must be undertaken with great caution.

In section I, the classical theoretical approach to describing a nonlinear oscillator will be

illustrated.  In section II the experimental procedure will be described.  This section will be

followed by sections describing the results (section III), discussion (section IV), and conclusions

(section V).

I.  Theory

Nonlinear resonance has been discussed by many authors and treatments can be found in

numerous texts (e.g. Stoker, 1950).  It is not our primary purpose here to review theory in detail

nor to point out the associated problems one encounters when applying this theory to rock.  This

has already been done by Guyer et al. (1995) and discussed by Nazarov et al., (1988).  Therefore,

the nonlinear resonance theoretical development will be only briefly covered in this section.

 In the classical approach to describing wave propagation in a nonlinear material, the

energy density is expressed as a function of the scalar invarients of the strain tensor (e.g., Landau

and Lifshitz, 1959).  The strain energy is typically expanded to higher order resulting in an

equation of state where stress is expressed as a function of the strain and a series expansion of the

modulus.  In a typical Young's mode resonance experiment, the bar is secured in the middle,

excited at one end and the acceleration is detected on the opposite end.  Following  Landau and

Lifshitz (1959) and Guyer et al. (1994), the energy density E is,

Ε  =   - µ ε2ik  + ( 
K
2   -  

µ
3) ε2il  +  A

3
 
εikεilεkl + Bε2ikεil

+ 
C
3 ε2il + .... (1)

the stress tensor σ is,



Johnson, Zinszner, & Rasolofosaon J. Geophys. Res. 5

σ ik  = 
∂E

∂(∂ui/∂xk)
(2)

and the equation of motion for the displacement field u is,

ρo
∂2ui
∂t2

 =  ∂σ ik
∂xk

  .
(3)

K and µ  are the Bulk and shear moduli, respectively; A, B, and C are the third order nonlinear

coefficients used by Landau and Lifshitz; ρo is the mass density; and ε is the Lagrangian strain

tensor,

εik =  
1
2   (  ∂ui

∂xk
 +  

∂uk
∂xi

 + 
∂ul
∂xi

 
∂ul
∂xk

 ). (4)

[Einstein summation is assumed].  Using the above expansion gives the one dimensional

equation of motion for the displacement field of

∂2ui
∂t2

  =  ∂
∂x

  (c2 ∂u
∂x

 ), (5)

where 

c2  =  co2 [ 1 + β (∂u
∂x

 )+ δ (∂u
∂x)

2  +...
 ], (6)
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and c is the perturbed wave speed, co is the unperturbed wave speed, and β and δ  are coefficients

that characterize the cubic and quartic anharmonicities (they are the nonlinear coefficients that can

be directly related to A, B, and C above [e.g., see Green, 1973;  Johnson and Rasolofosaon,

1994). In the classical treatment, the average of the strain field over one period is assumed zero (it

may not be), so the quadratic term β is eliminated2. Therefore, using classical theory it is the

determination of δ  that is the goal of the resonance experiment.  Following Guyer et al., the term

proportional to δ  can be replaced  by its time average value,

   δ | (∂u
∂x)

2 | ~ δ ε2, (7)

and Eq. (6) can be rewritten as,

c2  -  co2

co2
   ~   ω

2  -  ωo2

ωo2
    ~  2[  ω

  -  ωo
ωo

 ]   ~  2[∆ω
ωo

]  ~  δ ε2, (8)

where ωo is the angular frequency of the "linear" resonant peak and ω is the angular frequency of

the resonant peak as it shifts with driving amplitude.  Our experiments are configured to measure

Q, ω and ωo and the acceleration (∂2u/∂t2) at any desired drive level or frequency.  Therefore,

we can, in theory, determine δ , the cubic nonlinear modulus.  We are also capable of measuring

the harmonic amplitudes of the time signal when the resonance is at maximum value.  Therefore,

as a comparison we can obtain an approximation of δ  from measurement of the third harmonic

amplitude,

δ  ~ – 
(∂2u3/∂t2) ωo4L2

(∂2u1/∂t2)3 , (9)

2It can be shown that including the quadratic term results in the same dependence in ε.
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where L is the bar length, (∂2u3/∂t2) is the acceleration of the third harmonic at resonance,

and(∂2u1/∂t2) is the acceleration of the fundamental frequency at resonance.  Similarly, from the

second harmonic amplitude we can obtain an approximation of β:

β ~ – 
(∂2u2/∂t2) ωo2L

(∂2u1/∂t2)2  . (10)

Eq. (5) is hysteretic in its frequency behavior (not to be confused with hysteresis in stress

versus strain!) in that it depends on which direction the driving frequency is swept, meaning that

the amplitude is not uniquely determined by the applied forcing function.  This is a classical result

from analysis of nonlinear oscillators (e.g., Stoker, 1955).  This behavior will be illustrated in the

results section.

The discrete system assumption implies that stress σ, strain ε, and displacement u are

homogeneous in the sample as a function of time.  In reality, this is not the case.  Stress and strain

are maximum at the center of the bar (in absolute value) and minimum at the bar ends.

Displacement is maximum at the bar ends and minimum in the bar center;  however, solution to

the elastic resonance equation of motion provides nearly identical results to those above.

Young's modulus Eo is obtained from the fundamental resonant frequency measured at

low drive voltage in the strain interval of 10-8-10-9  (linear regime). From the mass density ρ and

length L the modulus is,

Eo = ρo CE2 =ρo L
2ωo2

π2 (11)

where ωo is the fundamental resonant bar frequency at linear elastic strain, and CE is the Young's

mode velocity at  ωo.
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II.  Experimental Procedure

The basic elements of the experimental configuration for obtaining frequency versus

acceleration measurements are shown in Figure 1.  We use both an analog or digital experimental

apparatus, depending on the desired result.  In general, the analog method is superior when it is

necessary to observe a large dynamic range. The digital method is fast and convenient, but has the

disadvantage of a smaller dynamic range.

The analog method is described first.  Two function generators serve as a voltage to

frequency converter.  A ramp voltage function output from one function generator is fed to a

second function generator to create a frequency sweep interval.  The interval is chosen to

encompass frequencies well above and well below the fundamental resonant mode of the sample.

The signal is amplified and acoustically excited by an electromagnetic (coil/ magnet) source and

affixed oriented parallel to the axis of the sample.  Piezoelectric and shaker-type sources are also

used.  The  signal is detected by use of a calibrated accelerometer, is pre-amplified, and is then fed

to a voltmeter where the signal is time averaged and frequency versus maximum acceleration is

plotted on a graphics tablet.  The signal is also fed to a digital oscilloscope for monitoring the time

series signal.  Measurements are made of both upward and downward frequency sweeps over the

chosen interval. Typically, 5-20 experiments are conducted at successively increasing drive

voltages over the same frequency interval in order to monitor resonant peak shift and harmonic

generation.  A single sweep is typically 1-5 minutes in duration.

The digital measurements are made with a PC that contains a card that has both a function

generator and a heterodyne detector.  In this configuration, a constant amplitude drive signal

output from the card is multiplied with the detected signal from the rock.  The multiplied signal is

time averaged and low-pass filtered providing a dc output proportional to the detected
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acceleration.  The PC also contains a 16 bit A-D card for capturing time signals for harmonic

analysis.  A stand alone spectral analyzer that has stacking capability is also used when desired.

Measurements of at least nine different rock samples were made.  These include Berea

sandstone, Meule sandstone, Lavoux limestone, magnesium marble, Estaillades limestone,  St.

Pantaleon limestone, Asian marble, Chalk, Fontainebleau sandstone and Carrera marble.

Comparative studies were conducted using the relatively elastically linear materials aluminum,

PVC, Plexiglas, Pyrex glass, porous sintered aluminum, and polycarbonate.  For several rock

samples, including Meule sandstone, Lavoux limestone, and chalk, measurements were taken at

numerous different water saturation levels between approximately 1-99%.  In each case, the

sample was saturated after evacuation and measurements were made as the rock dried under

room conditions.  Densities were estimated from the dry weight and the measured porosity.

Sample lengths ranged from 0.30 - 1.15 m and diameters ranged from 0.025 - 0.105 m.

III.  Results

Typical  Behavior of  Elastically "Linear" Solids

Figure 2a shows a sample sequence of resonance curves for twelve different excitation

levels in polyvinyl chloride (PVC), a material that is relatively "linear" in comparison with most

rocks.  The figure shows detected acceleration versus swept frequency.  Both downward and

upward frequency sweeps were conducted at each drive level.  Downward and upward sweeps

are indistinguishable from each other.   Note the Q (59) is similar to many rocks.   Figure 2b

shows excitation-strain data collected at the resonant peak excitations in polycarbonate, another

"linear" material, from a nearly identical experiment to that shown in Figure 2a [the resonant

peaks are of the same character as those for PVC, i.e., no peak bending is observed].  Note that

the excitation versus strain curve is in essence a net stress versus strain curve because excitation is

linearly proportional to stress.  The experiment differs slightly in that, at each resonant peak, the
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drive frequency and excitation level is held constant while the time signal is collected and

averaged to improve the signal to noise ratio.  The averaged signal is then Fourier analyzed and

the relative harmonic amplitudes are measured.  The plot shows the drive excitation level in mA

on the left-hand Y-axis versus the measured strain level on the X-axis (solid bold line).    In this

strain range, no harmonics are observed.  It comes as no surprise that all of the "linear" materials

studied have a constant derivative of ∂(excitation)/∂σ, that is, a linear stress-strain relation and

therefore a single modulus (See below).  This plot will be compared to that for a rock shortly.

Strain ε is calculated as follows,

ε = 
∂u
∂x  = 

2u
Lo

 , (12)

where again u is displacement and Lo is the bar length at rest.  The factor of 2 appears because the

strain is symmetric about the center of the bar.   Acceleration

∂2u
∂t2

  = -u ω2 eiω t (13)

is the actual measured value in the experiments, however, for a continuous wave drive.  For the

time averaged signal, the displacement at the bar ends is,

u = - 
∂2u/∂t2

ω2
   (14)

where ω is the frequency at which the acceleration is measured (the maximum resonance

response in general).  From Eqs. (12) and (14) strain is then,

ε = 
∂u
∂x  = 

2u
Lo

 = - 2 
∂2u/∂t2

Loω2
  . (15)
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We indicate several important observations from Figures 2a and 2b that can be regarded

as representative for "linear" solids.  In general, these materials:

(1)  show no detectable peak bending;

(2)  display a linear relationship between excitation and strain;

(3)  show a very low level of harmonics compared to nonlinear elastic materials.

Based of the resolution of our system we consider that the level of harmonic generation in

"linear" solids is near the limit of our resolution (using a 12 bit digital oscilloscope and averaging

signals).

These four observations  are representative of all of the "linear" materials listed above3.

When harmonics are observed in these materials, they are inferred to originate from the response

of the materials themselves because harmonics are not observed in all of the "linear" materials

(e.g., sintered aluminum), and the relative harmonic levels vary from material to material.  This

would not be the case if the source (especially electro-magnetic hysteresis) or electronics were the

source or the harmonics.  Based on our research, that of Nazarov et al. (1988), and that from the

nonlinear acoustics community, we would not expect to observe harmonics in these materials.

We believe there may be geometrical "extrinsic" effects in resonance that induce small levels of

harmonics as opposed to material property "intrinsic" effects that do not contribute to harmonic

generation in these materials.  This work is continuing.  The results of attenuation, sample

dimensions, frequency shift, modulus, detection of harmonics, and strain levels on elastically

"linear" materials are displayed in Table 1.

Typical  Behavior of Elastically Nonlinear Solids:  Rock

In Figure 3a, a representative result for Young's mode resonant behavior in rock is

shown.  The material is Lavoux limestone under ambient conditions.  Contrast this result to that

3A cautionary note:  the experimental apparatus does not provide the frequency resolution to
quantitatively study high Q materials such as Aluminum.
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of PVC shown in Figure 2a.  The difference is astonishing.  Figure 3b shows the result for

Fontainebleau sandstone also at ambient conditions.  The central portion of Figure 3b shows the

resonant peak bending, and the bottom and top plots show the corresponding time and frequency

domain signals at low (but nonlinear) drive level, and large drive level, respectively.  Note that the

linear resonant response has been expanded vertically in both Figure 3a and 3b.

Peak Bending and Frequency Hysteresis  in Rock

In the resonance plots shown in Figures 3a and 3b, the solid lines represent downward

frequency sweeps and the dashed lines represent upward frequency sweeps.  Two striking

observations are of note.  First, the peak bending is dramatic as a function of detected acceleration

in these samples.  Second, the shape of the curve depends on in which direction the sweep takes

place, upward or downward in frequency.  This second observation is typical of nonlinear

oscillators in general (e.g., see Stokes, 1950).  Qualitatively, the resonant frequency shift and the

difference in upward and downward resonant behavior (frequency hysteresis) can be thought of

as follows.  Initially, the modulus is in its at rest (elastically "linear") state.  At very low, but

successively increasing drive levels, the resonant response may  (but not always) remain at the

same frequency, as has been shown by others (e.g., Winkler and Nur, 1979;  Murphy, 1982;

Bulau et al., 1984).  As the source drive level is increased, the material net modulus begins to

drop, and this is reflected in a drop in the resonant frequency.  As the drive frequency approaches

the modified resonant frequency, naturally, the excitation becomes larger as well.  Larger

excitation induces the net modulus to drop even further, and the resonant frequency in effect,

"chases" the resonant peak as it steadily shifts downward in response to larger and larger

excitation.  This cause and effect relationship takes place until the bar reaches some maximum

energy state proportional to the maximum input energy in the sample.  At this point, as the

frequency is decreased further, it passes through the modified resonant peak and the amplitude

drops rapidly back to the non-resonant value. The resonance frequency immediately shifts back to

its original, elastically "linear" value.  The shift back can be readily observed by conducting a low
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amplitude frequency sweep immediately after a high amplitude sweep.  The resonant frequency is

that of the original value, or very close to it.

As frequency is swept in the upward direction, the modulus begins again at its rest

(elastically linear) state.  At larger excitation levels, as the frequency approaches the linear

resonant value and more energy is introduced into the resonating bar, the net modulus begins to

drop as before.  In effect, the maximum energy state (depending on drive level and material

property) where the resonant frequency is at minimum (as is the modulus) and the upward swept

frequency "meet" and the frequency passes through the modified resonant peak.  This process

takes place over a very short frequency interval as can be seen by the abrupt increase in

acceleration response in Figure 3a.  As frequency increases further, the resonant peak is modified

upward, but lags behind the sweep frequency in the experiments shown. As before, the modulus

returns to its at rest state after excitation.

The corresponding time and frequency domain plots (Figure 3b bottom and top plots) for

two different resonance peaks corresponding to two different excitation levels show typical

results.  In this case, at low drive (but in the nonlinear response regime), the time signal is

distorted, being composed of the fundamental and third harmonic.  As the drive is increased, the

time signal becomes highly distorted, is asymmetric and has a dc component, all manifestations

of elastic nonlinear behavior in the material.  The corresponding spectrum illustrates the rich

spectrum associated with large excitation level.  In general, odd harmonics tend to dominate in

rock, in contrast to the elastically "linear" materials studied above.

Figure 4 shows the excitation and harmonic ratio versus strain for the Lavoux Limestone

sample at 0.5% water saturation.  In this case, only the second and third harmonics were

measured although higher harmonics were present.  The excitation versus strain curve is not

atypical of rocks.  Often, for the rocks studied and at the various saturation conditions, the

excitation goes approximately as the square of the strain.   There are certainly exceptions to this,

one being chalk (to be discussed soon).  Also, note that the third harmonic grows much more

rapidly than the second harmonic as was noted previously.
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We indicate three fundamental observations from Figures 3a and 4 that can be regarded as

representative for rock.  These materials:

(1)  generally but not always show peak bending;

(2)  generally but not always display a nonlinear relationship between excitation and strain over

the strain intervals studied, indicative of a nonlinear relation between stress and strain (see below);

and,

(3)  show a rich spectrum of harmonics at strain levels as low as 10-7.

A final observation in regards to resonant peak shift is noteworthy.  Depending on the

rock and the saturation state, the resonant peak may begin shifting immediately, even at the lowest

possible applied drive levels and at strain levels that are extremely small (<10-8).  This is certainly

not an exceptional observation in the rocks that were studied.  For example, Berea sandstone

shows this behavior at ambient conditions.  This is an important consideration for measurement

of Q and velocity when applying the resonant bar method.

The Change in  Resonant Frequency, Harmonics, and the Nonlinear Modulus

As indicated from the approximation shown in Eq. (8), the cubic nonlinear parameter δ

should be obtained from the change in angular resonant frequency ω as a function of the strain ε.

Comparison can be made with δ  obtained from measurement of the third harmonic amplitude

(Eq. (9)).  The quadratic nonlinear parameter β should be obtained from the second harmonic

amplitude (Eq. (10)).  Higher order nonlinear parameters may exist based on the observation of

higher harmonics.  The theory describing the higher order moduli using a perturbative expansion

approach is derived in Van Den Abeele (1995).  An alternative is a discontinuous equation of

state which requires only a quadratic term in strain (see Guyer et al., 1995).

We plot  ∆ω/ωo versus strain ε for several data sets. Meule sandstone, Lavoux limestone,

St. Pantaleon limestone, Fontainebleau sandstone, and chalk are shown at various saturation

conditions in Figure 5  Two observations are of note.
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(1)  ∆ω/ωo does not  go as the strain squared but is an approximately linear function of the

strain with of slope of approximately 0.7-1.5.

(2)  At large strain, the slope of ∆ω/ωo versus strain ε tends to decrease.

The error bars are very small at large  ∆ω/ωo (approximately the diameter of the symbols), but

are large at small  ∆ω/ωo (up to a factor of two).  Despite this, it is convincing from the large

number of data that the slope is not two.  This implies the traditional theory is inadequate for

obtaining the nonlinear modulus form the resonant peak shift in its current state of development.

Figure 6 shows how the cubic nonlinear parameter is estimated for Berea sandstone,

based on Eq. (9).  A similar plot can be made using the second harmonic data using Eq. (8) to

obtain the quadratic parameter.  The outstanding result from Figure 6 is that the cubic parameter is

impossibly large (> |1010|).  The results for various rocks are tabulated in Table 2 along with their

saturation states, Q, and the nonlinear modulus obtained from harmonic analysis using Eqs. (9)

and (10) for data where harmonics were available. Table 3 shows the results for Lavoux

limestone at all saturation states.  The nonlinear coefficients derived from the slope change and the

harmonics are far too large to be compatible with other data.  We will address this issue in the

discussion.

Ultrasonic Pulse-Mode Velocity Change With Excitation Level

It is an interesting exercise to measure the velocity as a function of the excitation and strain

level in rock, because we expect such a change.  In this experiment, we placed piezoelectric

transducers on either side of the bar near the bar midpoint for lateral measurement of time delay.

We then conducted the resonant sweep measurements at steadily increasing drive levels as before.

The pulse-mode wave time delay across the sample is measured when the bar is at peak

resonance for each respective excitation level.  The experiment is duplicated with transducers very

near one end of the bar.  The two data sets were collected intentionally where the stress is

maximum (bar center) and minimum (bar end).  We would expect to see a larger effect where the

stress is largest, if at all.
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The results are shown in Figure 7a.  Errors in measurements are much smaller than the

overall change.  As expected, there was no measurable change in velocity recorded near the bar

end.  At the bar center, the modulus decreases as a function of excitation level (the normalized

lateral modulus is related to the longitudinal modulus by Poisson's ratio, a nonlinear quantity

also).  This is consistent with all results we are aware on rock in that it demonstrates a softening

nonlinearity of the rock.

The β based on the change in velocity (modulus) is approximately 104, a value compatible

with static and quasi static results.

Strange Nonlinear Elastic Behavior:  Chalk

In our investigation we have discovered some additional unexpected results that seem to

be related to rock composition.  Chalk is an example of a rock that shows unique "strange"

behavior relative to the other rocks investigated.  An illustration of a sample resonance curve for

chalk at a water saturation of about 45% is shown in Figure 8a.  Only the "linear" resonance peak

(expanded vertical scale) and one high drive level sweep, both upward and downward, are shown.

The frequency changes from approximately 1260 to 1225 Hz.  There are three striking

observations that can be made from this plot and from our general experience with chalk.

(1)  The curves do not resemble those of other rocks;  in fact, the curves are an

approximate mirror image of the typical behavior in rock.  The abrupt transition in amplitude

occurs on the high frequency side of the nonlinear resonance (compare the plot for Fontainebleau

sandstone in Figure 3a).

(2)  The ratio of the low amplitude "linear" strain level to the large amplitude strain level is

significantly larger when compared to other rocks (not shown).

(3)  At large drive level during the downward sweep, the detected signal response

oscillates rapidly up and down as it approaches the resonance peak.

The harmonic spectrum which was observed but not collected for a different but similar

experiment is enormously rich.  Harmonics are observed out to at least 50 kHz.  Figure 8b shows
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the excitation level versus strain versus harmonic rations.  Note again the nonlinear excitation-

strain curve.  Figure 8c shows a plot of the harmonic spectrum for an experiment with dry chalk.

The plot shows ∆ω/ωo versus strain versus harmonic ratio for a sample at 0.5% water saturation.

The result shown is typical for a dry sample.  Interestingly, in contrast to the partially saturated

chalk, there is very little resonant peak bending;  however, the harmonic spectrum is nonetheless

extremely rich.  Figure 8d shows a comparative plot for Lavoux limestone (0.1% saturation).

Peak bending and harmonic generation both occur in the Lavoux which is typical of a rock;

whereas, peak bending is nearly negligible in the chalk while the harmonic spectrum is rich.

The oscillation in the response for partially saturated chalk shows an instability not

obviously present in other rocks.  We can only infer that chalk has perhaps the most nonlinear

response of any rock we have investigated as demonstrated by the harmonic content.  The

instability may be indicative of the onset of chaotic behavior. We were unable to collect spectra in

this region of the curve so this hypothesis is currently not verified.

It is not obvious why the resonant response of chalk is the reverse of that for other rocks.

Future modeling may help us understand this phenomenon.  We can infer from the results for

chalk that much of the energy input into chalk at the fundamental or near the fundamental

resonance is transferred to harmonics, far more so than in other materials studied.  This is

especially true of partially saturated chalk where the large drive level resonant peak shows a lower

response in acceleration than the low amplitude drive.  The associated spectrum confirms this.

An important lesson from the chalk is that nonlinearity is not necessarily indicated by peak

bending, but by monitoring harmonics and that saturation plays an important role in the response

of the material.  This is a very important clue to our later discussion on why the perturbation

theory alone is not suitable for rocks.

IV.  Discussion
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The nonlinear coefficients derived from a perturbation expansion of the resonance wave

equation are not realistic in comparison to those obtained from quasi-static experiments.  They

cannot be correct if we believe the available data from stress-strain tests.  We calculate a quadratic

nonlinear parameter β of order -103 to -104 and cubic parameters δ  of -106 to -108 from a diverse

suite of data available in the literature for many rock types.  Comparison of the stress-strain curve

for "normal" nonlinear parameters versus those obtained from resonance are shown in Figure 9.

This behavior is not realistic.  Other clues indicating that a model invoking a classical perturbation

expansion of the equation of state (or the strain energy function) is not correct come from some

of the results presented in this work.  For example, the observation in chalk of a rich harmonic

spectrum in the presence of little or no peak bending is one indication.  The incorrect power law

dependence as predicted by Eq (8) and shown by the plots in Figure 5 provides an additional and

closely related clue.  Evidence from elsewhere suggesting that a straightforward perturbation

expansion is insufficient comes from the large body of published results showing that hysteresis

and discrete memory are ever-present in rock (see e.g., Guyer et al., 1995;  Boitnott, 1993;

Holcomb, 1982).

What are the implications of the existence of hysteresis and discrete memory in a

resonating or propagating wave?  These are mechanisms for additional wave distortion

(harmonics).  Inclusion of discrete memory and hysteresis offers tool whereby a more

comprehensive description of nonlinear behavior emerges.  The discussion of the theory has been

covered elsewhere (Guyer et a., 1995) and it is not our intention to provide the details of the

model here.  Suffice it to say that the model shows development of harmonics by expanding the

modulus to first order with the inclusion of hysteresis and discrete memory.  The theoretical

results show a rich spectrum of higher harmonics.   In fact, Guyer and McCall (1994) have

included hysteresis and discrete memory in the nonlinear wave equation for propagating waves.

Hysteresis and discrete memory provide a model where harmonics are generated from the

nonlinear stress-strain curve and from the cusps of the hysteresis loop (discrete memory).

However, the inclusion of hysteresis and discrete memory in the perturbation expansion is not



Johnson, Zinszner, & Rasolofosaon J. Geophys. Res. 19

sufficient as yet in providing us with the tools to directly calculate the nonlinear coefficients in our

work.   Our theoretical approach is under appropriate modification at present.

Our work shows further that, because the classical theory may not be directly applied to

rock, the information about the nonlinear response of a given rock sample is not necessarily

obtained in a straightforward manner as it would be in a material that does not display hysteretic

and discrete memory effects.  Thus application of this method at present is perhaps best suited to

comparative study of rocks.

Modulus and Excitation Versus Strain

The excitation-strain curve, for example that shown in Figure 4 for Lavoux limestone,

provides some measure of the instantaneous modulus.  This makes intuitive sense because, as the

excitation increases, energy is transferred into harmonics.  The result of measuring the

fundamental amplitude is that the calculated strain is smaller than predicted in the absence of

energy transfer to harmonics, i.e., in the absence of elastic nonlinearity.  The strain at the

fundamental frequency is smaller than it should be for a given excitation.  Thus the deviation

from linearity in the excitation-strain curve is a measure of the energy transfer, in other words, the

nonlinearity itself.  We can be certain that the curve is not a source or instrumentation effect based

on the elastically "linear" materials we have studied.  Figure 2b shows such an example for

sintered aluminum.  The excitation-strain curves could be used to calculate nonlinear moduli β

and δ because excitation can be directly related to applied force;  however, if hysteresis and

discrete memory are active, then this would not be a useful exercise because the downgoing curve

for excitation-strain would differ, and we are unable to measure the strain in this direction.

Lessons For Measurement of Q and Modulus

  An important lesson from observation of peak bending is that Q cannot be reliably

measured in this circumstance.  The imaginary portion of the nonlinear modulus is the

attenuation, and it is related in a very complex manner to the width of the peak and the associated
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harmonics (e.g., McCall, 1994;  Van Den Abeele, 1995).  Therefore, measurement of Q for

anything but a perfectly linear (i.e., symmetric)  resonant curve is meaningless.  In fact, even

applying the results of an apparent linear resonance curve can be misleading.  As our experience

with chalk shows, it is possible to observe little or no resonant peak bending simultaneous with

even enormous harmonic generation.  The presence of harmonics will result in an underestimate

of Q.

Sweep Rate and Relaxation Effects

We have not addressed sweep rate effects in this paper.  We have examined rate

dependence, and have observed obvious rate-dependent effects on the resonance curves.  The

resonance curves maintain the same general character if, for example, the sweep rate is increased.

Our experiments were conducted at rates we deemed reasonable after numerous empirical tests.

In addition, we have observed relaxation effects after a frequency sweep in some rocks.   We

have noted that it may take tens of seconds or up to several minutes for a rock to return to its

original "linear" elastic state after a large amplitude frequency sweep.  In any case, these effects do

not affect the conclusions presented here.

Relative Strain Levels

What is the relation between large strain quasi-static tests and wave measurements that are

conducted at orders of magnitude smaller strain levels?   We believe the link between large and

small strain level measurements has been made with the introduction of the hysteresis and

discrete memory model proposed by McCall and Guyer (1994) and Guyer et al. (1995).  In this

work, a framework for understanding nonlinear elasticity is presented, including an understanding

of the continuum between large and small strain measurements, and the relation between the

elastic makeup of the material, hysteresis, and discrete memory.

Of What Use are Nonlinear  Elastic Measurements?
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A fundamental question remains as to the value of measuring and understanding

nonlinear elasticity in rock over and above academic interest.  To first order, the nonlinear elastic

response is certainly related to the micro and macro structure of the material, the grain to grain

contacts, the microcracks, joints, etc.  The contained fluid also plays a very important role.  The

sensitivity of the nonlinear response to the structure and fluid content is far larger than that of

standard linear measurements of wave speed, modulus and attenuation.  The problem is that these

measurements are difficult to make and great care must be taken in separating the apparatus

effects that can be identical.  These are problems that are surmountable.  The rewards may be

great.  We believe that the work presented in this paper and work on nonlinear elasticity by our

group and other groups will lead us to a new level of understanding the makeup of materials;

new methods of quantifying the features that contribute to the nonlinear response in manners that

were previously unrealized by application of linear methods.  The discipline of nonlinear elasticity

is coming ever closer to this goal.

V.  Conclusions

We have demonstrated that the classical approach to modeling nonlinear oscillators does

not hold for rocks.  We believe the key difference between rocks and a classic nonlinear oscillator

is the presence of discrete memory and hysteresis in rock.  We have also shown that great care

must be taken when measuring and interpreting modulus and Q from resonance experiments.

This is not a new result (e.g., Winkler and Nur, 1979, etc.);  however, it is clear from our work

that initiation of peak bending cannot be relied on for the onset of nonlinear elastic response.  On

the contrary, the only reliable method is to monitor harmonic generation.

The ramifications of nonlinear response in rock may ultimately effect many areas of

research in Geoscience including seismology, where the spectral distortion of seismic waves

during propagation must be considered (e.g., Johnson and McCall, 1994;  Balau et al., 1984).

This was recently field verified by Beresnev and Wen.  Other areas of research include rock
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mechanics and materials science where the nonlinear response of a material may be used for

characterization purposes.  In addition, characterization of material property change by monitoring

nonlinear response may be of value.  For instance, these changes include variations in water

saturation for porous media, change in response to variations in stress, change induced by fatigue

damage, etc.  Work in these areas is ongoing.
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Figure Captions

Figure 1.  Experimental configuration.  See text for explanation.

Figure 2a.  Detected acceleration versus swept frequency for a sequence of resonance curves at

twelve different excitation levels in polyvinyl chloride (PVC).  Both downward and upward

frequency sweeps are plotted;  however they are indistinguishable from each other. (2b)

Excitation level versus strain in polycarbonate.  The solid bold line shows the drive excitation

level in mA (Y-axis) versus the strain level (X-axis).  The harmonic ratio, if it existed over

this strain interval would be plotted as well;  as there were none observed, none are plotted.

Note that the resonance curves show no peak bending, just as those for PVC.

Figure 3a.  Elastic nonlinear behavior in a rock  (3a)  Acceleration versus frequency for nine

excitation levels in Lavoux sandstone at ambient conditions.  The large peak at 1234 Hz is

artificially amplified to show the character of the linear behavior. (3b)  Acceleration versus

frequency for nine excitation levels in Fontainebleau sandstone at ambient conditions.  The

central portion of the figure shows the resonant peak bending for both upward (dashed lines)

and downward (solid lines) frequency sweeps.   The bottom and top plots show the

corresponding time and frequency domain signals at low (but  elastically nonlinear) drive

level, and large drive level, respectively.   The large peak at 1391 Hz is artificially amplified to

show the character of the linear behavior.

Figure 4.  Excitation level versus strain, and harmonic ratio versus strain in Lavoux limestone at

0.5% water saturation.  The solid bold line shows the drive excitation level in mA (left-hand

Y-axis) versus the strain level (X-axis).  The harmonic ratio of each successive harmonic to

the fundamental detected level is shown by the curved lines.  The ratio values are shown on
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the right-hand Y-axis, again versus strain.  The ratios of the second U(f2), and third U(f3)

harmonics relative the first harmonic U(f1) [the fundamental] are plotted.  The curves

associated with the harmonic data are second order polynomial fits shown to aid visualization

of the data.  In this case, only the second and third harmonics were measured although higher

harmonics were present.  Compare to Figure (2b) for polycarbonate where no harmonics

were observed over this strain interval.

Figure 5.  |∆ω/ωo| versus strain ε for  (a) Meule sandstone, (b) Lavoux limestone, (c) St.

Pantaleon limestone, (d) Fontainebleau sandstone, and (e) chalk at various saturation

conditions in.

Figure 6.  The cubic nonlinear parameter δ  obtained from the third harmonic data for Berea

sandstone.

Figure 7.  Modulus calculated from time delay across the short direction of a sample of

Fontainebleau sandstone during a typical sequence of resonance sweeps.  Measurements were

made near the bar center at near the bar end.  The result shown was taken at the bar center;

that at the bar end shows no change within our precision.  Error bars are approximately two to

three times the size of one dot.

Figure 8a.  Resonant sweep data for both upward and downward sweep intervals for partially

saturated chalk. Only a low drive and high drive level result are shown.  The "linear" peak is

not to scale, but has been expanded vertically.   (8b)  Excitation-strain-harmonic ratio data for

dry chalk.  (8c)  ∆ω/ωo  versus strain versus harmonic ratio data for dry chalk (slightly

different saturation than in figures (a) and (b).  Both ∆ω/ωo and the harmonic ratios have been

normalized to their minimum values. Note the harmonic generation but minimal peak
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bending.  (8d)  Comparative plot in using the same scale parameters for dry Lavoux.  Note

the peak bending and simultaneous harmonic generation.

Figure 9.  Hypothetical stress-strain curve using calculated nonlinear coefficients from these

experiments compared to those for  "expected" values.
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Tables

 Material Q Length x
Diameter
(cm)

Slope of
Frequency
Shift
   Eq. (8)

Excitation-
Strain
Derivative

Harmonics
Detected

Maximum
Detected
Strain

Sintered Aluminum 290 100. x 8. UD1 linear None 1.2x10-5

Plexiglas 27 34. x 4. UD linear 2,3,4 4.4x10-6

PVC a 59 120. x 8. UD linear 2, 3.0x10-6

PVC b 59 61.2 x 10.5 UD linear 2,4,3,6,5,7 5.3x10-6

Aluminum >50000 35. x 4. UD linear 2,3,4 2.2x10-5

Pyrex Glass 2750 93.8 x 4. UD linear 2 2.2x10-5

Polycarbonate 130 101.6 x 4. UD linear 2,3,4 1.1x10-4

Table 1.  Coefficients for elastically "linear" materials.    Data shown, respectively, are inverse
attenuation Q; sample length and diameters; the slope of the frequency shift from Eq. (8) which
theoretically provides a measure of δ ;  the derivative of the excitation versus strain plot which is a
measure of the modulus  [It is only indicated whether or not the slope is linear (i.e., constant
modulus and a linear equation of state)];  whether or not harmonics were detected in the time
signal at resonance;  and maximum detected strain levels.  The numbers of the harmonics show
which harmonics were detected and the relative dominance of observed harmonic amplitudes
over the range of strain observation.  For example, aluminum  shows that the second, fourth and
fifth harmonics were observed, and each successive harmonic amplitude over the range measured
was relatively smaller in amplitude.  On the other hand, PVCb shows that he fourth harmonic
dominated over the third, etc.  The PVC samples only differed in dimension.

1UD (UnDetectable) indicates that there was no detectable frequency shift using our apparatus.
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 Material Q  Sw
 %

Length x
Diameter
(cm)

Slope of
Frequency
Shift
   Eq. (8)

     |δ|
(Harm-
onic)

Excitation-
Strain
Derivative

Maximum
Detected
Strain

Estaillades Limestone 86 30 116.0x8.0 -1.3x1010 3.28x1010 NL 8.8x10-7
St. Pantaleon Limestone 140 42 115.0x8.0 -3.4x1010 NL 1.1x10-6
St. Pantaleon Limestone 170 18 115.0x8.0 -1.3x1010 NL 1.3x10-6
ASI Marble 360 ~0 49.0x4.0 -3.1x109 2.91x109 NL 3.1x10-6
Chalk 225 ~0 63.8x9.0 -8.4x1010 3.45x1014 NL 1.3x10-5
Meule 4.6 98 107.6x5.0 -3.8x109 Linear 1.7x10-5
Berea Sandstone 70 UK 30.1x5.0 -4.1x1010 NL 1.4x10-6
Fontainebleau Sandstone 100 ~0 39.0x4.0 NL 1.1x10-5

Table 2. Physical properties of various rocks, the shift of the slope (|∆ω/ωo| versus strain2), the
derivative of the excitation-strain curve (linear or NL nonlinear), and the maximum detected strain
at the peak in resonance.   Sw refers to saturation.
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 Material Q  Sw
  %

slope
frequency
shift

|δ |
(Harmonic)

Lavoux Limestone 1000 0.1 -7.36x108 -1.92x109

820 0.5 -1.11x109 -3.59x109

770 1.0 -1.26x109 -1.99x109

700 1.5 -1.60x109 -9.10x109

420 4.0 -1.11x109 -8.07x109

440 5.0 -6.05x109 -1.72x109

440 8.0 -4.62x109 -3.13x109

330 20.0 -1.42x1010 -1.45x1010

360 24.0 -9.15x109 -8.13x109

350 31.0 -1.39x1010 -1.21x1010

280 45.0 -1.13x1010 -9.15x109

300 50.0 -9.26x109 -1.32x1010

310 64.0 -2.04x1010 -7.01x109

150 73.0 -1.41x1010 -6.24x109

80 84.0 -1.31x1010 -4.49x1010

45 98.0 -2.51x1011 -9.56x109

Table 3.  Physical properties as a function of saturation in Lavoux Limestone.  Median value of δ
shown from harmonic data.
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Figure 1.
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Figure 2a.
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Figure 3a.
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Figure 3b.
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